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The accuracy of the random vortex method, a numerical scheme that combines the 
representation of the vorticity field by a number of Lagrangian vortex elements of finite cores 
with a stochastic simulation of diffusion using random walk, is investigated. The converged 
solutions for a 2-dimensional entry flow in a channel and a recirculating flow behind a 
rearward-facing step, both in the laminar range of Reynolds numbers, are compared with 
analytical results and experimental data, respectively. It is shown that the computed results 
converge as the strength of computational vortex elements is decreased, and that the method 
is accurate to within the experimental errors. The convergence properties are used to devise a 
scheme for optimizing the choice of the numerical parameters. (r 1987 Academic Press, Inc. 

1. INTRODUCTION 

Vortex methods have been used to construct numerical solutions for the 
Navier-Stokes equations at high Reynolds numbers, and to model the development 
of unstable flow fields associated with the roll-up of velocity discontinuities. The 
success of vortex methods in the second task was achieved after employing a filter- 
ing mechanism to remove the numerical instability associated with the use of 
singular point vertices (Chorin and Bernard [l], Kuwahara and Takami [2], 
Saffman and Baker [3]). In particular, the use of vortex elements with finite cores 
was essential to avoid the irregular motion that develops after the amplitude of the 
instability wave reaches a maximum, and to allow the successive roll-ups of the 
instability to continue in an organized form (Krasny [4]). In this paper, we show 
that vortex methods can be used to accomplish the first task successfully. Attention 
is focused on steady solutions. 

Vortex methods present a promising candidate for numerical simulation of 
unsteady flows. The representation of the vorticity field by a number of vortex 
elements is the most natural way to overcome the difftculties associated with the 
convective non-linearity of the Navier-Stokes equations. By employing a 
Lagrangian formulation, convection is expressed in terms of a set of coupled 
ordinary differential equations that can be integrated using efficient and accurate 
schemes. The numerical diffusion is minimized by avoiding the discretization of 
gradients. The Lagrangian scheme is grid-free, and the computations are self-adap- 
tive since vortex elements move to capture zones of large gradients associated with 
high concentrations of vorticity. 
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The development of numerical schemes for the solution of the Navier-Stokes 
equations requires, in addition to the representation of the vorticity field by a num- 
ber of non-singular vortex elements, the implementation of two extra mechanisms: 
(1) The satisfaction of the no-slip boundary condition along solid boundaries; and 
(2) the transports of vortex elements by diffusion. For that purpose, Chorin 
[S, 6,7] proposed the random vortex method, in which vortex blobs are con- 
tinuously generated along solid boundaries by satisfying the no-slip condition, and 
transported in the interior by convection and diffusion in a Langrangian fashion. 
The latter is simulated by the random walk displacement of the vortex elements 
according to Gaussian statistics. The vortex sheet algorithm was introduced to 
simulate the boundary layer flow, and was used to satisfy the no-slip condition in 
the original scheme. 

The random vortex method was applied to the recirculating flow behind a 
rearward-facing step at high Reynolds numbers by Ashurst [S] and by Ghoniem, 
Chorin, and Oppenheim [9]. The computed results showed good qualitative 
agreement with experimental observations in terms of the structure of the vorticity 
field and its unsteady dynamics. No attempt was made to compare the computed 
velocity field with the experimental measurements since the actual flow was tur- 
bulent, hence 3-dimensional, while the numerical solution was based on the 
assumption that the flow is strictly 2-dimensional. Three-dimensional effects at high 
Reynolds numbers were manifested in the results of Hsiao et al. [lo]; although the 
average velocity profiles were accurately computed, the fluctuating components of 
the velocity were poorly predicted. Cheer [ 1 l] presented a study for a high 
Reynolds number flow around an impulsively started cylinder. 

The discrepancy between the flow model used in the numerical study and the 
observed behaviour of the actual flow makes comparison between numerical results 
and experimental data inconclusive insofar as the accuracy of the scheme is concer- 
ned. As shown by Ghoniem and Sethian [12], and Sethian and Ghoniem [13], 
computations at low Reynolds numbers, where the actual flow is 2-dimensional, 
should be performed to investigate systematically the numerical errors. Quan- 
titatively, similarity between the numerical results and experimental observations 
on the structure of the recirculation zone, reported in [12, 131, showed that the 
random vortex method is sensitive to the changes in the dynamics of the flow from 
viscous-dominated to a balance between viscous and inertia forces. In the present 
paper, the accuracy of the method is investigated quantitatively by comparing com- 
puted results for an entry flow in a channel and for a recirculating flow behind a 
rearward-facing step with analytical and experimental results, respectively, at 
moderate Reynolds numbers. 

Convergence analysis of inviscid vortex methods have revealed valuable insight 
into their properties. Hald [14] proved that the solution obtained by an inviscid 
vortex scheme converges to the solution of the Euler equations if the numerical 
parameters are chosen appropriately. His analysis emphasized that the rate of con- 
vergence of the scheme depends on the form of the core function, and the ratio 
between the core radius and the initial separation between vortex elements. Beale 
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and Majda [ 151 were able to construct a class of core functions that produces 
arbitrary high order schemes. In both cases, the flow field extended to infinity and 
the total vorticity was constant, while the time integration of the ordinary differen- 
tial equations that govern the convective motion of vortex elements was exact. 
Anderson and Greengard [ 161 amended the analysis to include the effect of a finite 
order time integration scheme. Numerical experiments were conducted by 
Nakamura et al. [17] to verify these results for inviscid flows. 

Ghoniem and Sherman [18] extended the random walk algorithm for the 
simulation of diffusion to solve the problem of natural convection over an infinite 
flat plate in one dimension. In this scheme, vorticity is continuously generated 
inside the field by the action of the baroclinic torque, and at the wall by the 
satisfaction of the no-slip condition. The latter resembles the methodology of 
satisfying the boundary condition in the random vortex method. Computed results 
showed good agreement with the analytical solution of the same problem. Hald 
[ 191 established the convergence of this scheme, showing that the error is indepen- 
dent of the viscosity. 

In this work, the convergence and accuracy of the random vortex method is 
investigated computationally by conducting careful numerical experiments on two 
flow fields: entry flow in a channel and recirculating flow behind a rearward-facing 
step. The analytical solution of the first flow and the experimental results for the 
second flow are used for comparison. In both cases, flow fields are computed at a 
range of the Reynolds number where experimental observations indicate that the 
flow is free of 3-dimensional effects. Because of the lack of unsteady solutions or 
measurements for either flows, we concentrate on steady solutions. We define an 
accurate solution as a solution that is close to the analytical solution or to the 
experimental results, and a convergent solution as a solution that becomes more 
accurate as the numerical parameters are defined. An optimum solution is one 
which is accurate, while it is obtained with the minimum computational effort. A 
criterion is suggested for the sufficient number of vortex elements to obtain an 
accurate solution. 

In Section II, the formulation of the scheme is presented. In particular, we show 
how the potential and the no-slip boundary conditions are satisfied, and what are 
the numerical parameters that control the accuracy of the scheme. In Section III, 
results are presented for an entry channel flow and a recirculating flow. In Sec- 
tion IV, the effect of changing the controlling numerical parameters is analyzed. 
Section V is devoted to brief conclusions. 

II. FORMULATION AND NUMERICAL SCHEME 

The dynamics of a 2-dimensional incompressible flow is governed by the conser- 
vation of mass and momentum. In terms of the velocity and pressure, the differen- 
tial equations and boundary conditions are 
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g+u.vu= -Vp+AAu 
u=o on a,D, (3-a) 

u=(l,O) on a,D, (3-b) 

where u = (u, u) is the velocity normalized with respect to the uniform velocity at 
the inlet section of the channel U; x = (x, y), x and y are the streamwise and cross- 
stream directions, respectively, both normalized with respect to a reference length 
H,, where H, is the step height. t is the time normalized with respect to H,fU, p is 
the pressure normalized with respect to pU2 and the Reynolds number R = pUH,Ip, 
where p is the density and p is the viscosity, while 

and A= 

D is the solution domain, 8D is the boundary such that a,D is the walls and aiD is 
the inlet section. The outlet boundary condition will be presented in a later section. 
Vorticity is defined as the curl of the velocity vector, o = V x u. In two dimensions, 
u) is the scalar: 

au au 
w=G-G. 

(4) 

The vorticity transport equation is derived by taking the curl of Eq. (2). Using 
Eq. (1) and the identity V x Vp = 0, one obtains the following equation: 

expressing the transport of vorticity by convection and diffusion. Knowing the vor- 
ticity field, the velocity can be evaluated by integrating Eqs. (1) and (4), and using 
Eq. (5), the vorticity held can be advanced in time. The pressure is recovered from 
the velocity field by integrating the following equation: 

(6) 

which is derived as the divergence of Eq. (2) and using Eq. (1). 
In vortex methods, Eq. (5) is solved in two fractional steps by implementing the 

two mechanisms of transport in each time step of the computations individually 
such that 
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g+“.vw=o 
ace 1 
-=-Am. 
at R 

(7) 

In the first fractional step, the transport of vorticity due to convection is obtained 
from the solution of Eq. (7) in terms of the Lagrangian displacement of a set of 
finite vortex elements. In the second step, the solution of Eq. (8) is simulated 
stochastically by the random walk displacement of the same vortex elements. The 
boundary conditions, Eqs. (3), are satisfied by adding a potential velocity field in 
the convection step, and by creating extra vortex elements to satisfy the no-slip con- 
dition in the diffusion step. In the following, we describe each step in more detail. 

II. 1. Convection 

Equation (1) is satisfied by using a stream function $ such that 

a* w 
“=s and 

v= -z’ 

Substituting into Eq. (4) the following Poisson equation is obtained: 

At,+= -o(x). (10) 

The solution of this equation in a domain without boundaries is given in terms of 
the Green function of the Poisson equation as 

I)(X) = j G(x - x’) 0(x’) dx’ (11) 

where 

G(x)= -&ln r. 

r2 = x2 + y2, dx = dx dy, and the integration is performed over the area where 
10) > 0. The velocity distribution is recovered by substituting Eq. (11) into Eq. (9): 

u(x) = j K(x - x’) o(x’) dx’ (12) 

where 

K is the integral kernel of the Poisson equation. If x(X, t) is the trajectory of a par- 
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title that starts at X, and w(X) is the vorticity distribution at t = 0, then Eq. (7) is 
equivalent to (by virtue of Kelvin-Helmholtz theorem) 

~(X(X t)) = w(X) (14) 

while x is the solution of the differential equation: 

and x(X, 0) = x . 

Using this Lagrangian formulation of the vorticity transport equation circumvents 
the difficulties associated with the numerical treatment of the non-linearity of the 
inertial terms in the Navier-Stokes equations. It also allows the construction of 
efficient grid-free schemes in which the computational points follow the vorticity 
field in time. 

Equation (15) is a set of uncountably many ordinary differential equations 
which, supplemented with Eq. (12), provides a solution for the inviscid part of the 
Navier-Stokes equations. In order to reduce this to a finite number of equations, 
o(X) is discretized among small area elements to form particles of vorticity, or 
vortex blobs, each carrying a finite and invariant circulation r. The area A where 
(01 > 0 is divided into a number N of adjointed area elements 6A, and the 
circulation assigned to each vortex element is calculated as 

f,= s 4x1 dx 
64 (16) 

2 0(X,) 6Ai. 

The vorticity carried by each blob is distributed according to a core function with a 
finite radius 6 (Chorin and Bernard [ 11, and Kuwahara and Takami [2]). Within 
the core, vorticity is smooth, or almost smooth, guaranteeing a finite velocity at 
the center of the vortex element. The resulting approximation of the vorticity 
distribution is 

otx)= f rifd(x-Xz). (17) 
i= 1 

fa is the core function; it is radially symmetric, f=f(r), while Jf6 dx = 1. 6 
represents the characteristic fall-off length such thatf, is small, orfa = 0 for r > 6. In 
order to approximate the initial vorticity distribution accurately, 26 is often chosen 
to be larger than the initial separation between vortex centers such that a margin of 
overlap is allowed between vortex elements. In a normalized form,f, can be written 
as 
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The core function f plays a similar role as interpolating polynomials in linite- 
difference schemes and base functions in finite-element formulations. By requiring 
f to be radially symmetric, the approximation in Eq. (17) is at least second order 
(Hald [20].) 

The velocity produced by a distribution of finite-core vortex blobs is obtained by 
substituting Eq. (17) into Eq. (12): 

“6(X)’ g fzK,(x-Xi) (19) 
i= I 

where 

and 

s 
r 

K(Y) = 271 r.f(r) dr ; (21) 
0 

IC represents the fractional circulation of the element within radius r. A choice off 
that has been used extensively in applications is the function suggested by Chorin 
[5], for which 

(22) 

This is the simplest choice. While it possesses a singularity in the vorticity dis- 
tribution and a discontinuity in the velocity field, it has been used in numerous 
studies because of its comptability with the vorticity generation algorithm at the 
walls (McCraken and Peskin [21], Ghoniem et al. [lo], Cheer [ 111, Sethian 
[22], Ghoniem and Sethian [12]; see also Acton [23] and Leonard [24].) Other 
choices off have been suggested by Hald [ 141 and Beale and Majda [ 151, to 
provide better representation for the initial vorticity field and produce higher 
spatial accuracy at later times. This improvement was indicated in the inviscid flow 
calculations of Nakamura et al. [ 171, Perlman [25], and Beale and Majda [26]. 

The motion of vortex blobs is governed by a set of ordinary differential equations 
in the form of Eq. (15) with K replaced by K,. 

2= f T;KJx,-x,), j= 1, 2 ,..., N. (23) 
,= I 
ffi 

In viscous flow calculations, the number of vortex elements N changes with time 
due to the generation of vorticity by the action of the no-slip condition along 
solid boundaries or the Kutta condition at points of separation. This part will be 
discussed in Section II.4 
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The transport of vorticity due to diffusion is expressed by Eq. (8). In the random 
vortex method, the effect of diffusion is implemented by the dispersion of a finite 
number of vortex elements with finite and constant vorticity according to a 
2-dimensional Gaussian statistics. This is based on the fact that the Green function 
of the l-dimensional form of Eq. (8): 

Gr(y, t)=,/$%exp (24) 

is identical to the probability density function of a Gaussian random variable q 
with a zero mean and a standard deviation 0: 

P(q; t)=JQZexp ---&tj2 
( 1 

(25) 

if ~7 = m. To construct an algorithm based on this observation, the vorticity 
field at t = 0 is discretized among N particles placed at y =O, each carrying cir- 
culation r,,/N, where f, is the initial total circulation at y = 0. At later times, the 
distribution of o(y) is approximated by the same number of particles N located at 
v],, i=1,2 ,...) N, where {q > is chosen from a Gaussian population with zero mean 
and standard deviation CT. If the solution is required at each time step At, the par- 
ticles are displaced every time step using a new set {II}, each having a standard 
deviation 0=,/T- ( 2At R exploiting the linearity of the diffusion equation). For an 
arbitrary initial condition o( y), particles are distributed over the space at t = 0 
such that at each point N= N(y) = r(y)/r,, r,,, is the maximum circulation 
assigned to an individual particle. 

In two dimensions, the Green function of Eq. (8) is given by 

Gr’(x, y, t) = -& exp -z (x2 + Y2)) 

which is equivalent to 

Gr’(x, y, t) = Gr(x, t) Gr( y, t) (27) 

where Gr(x, t) and Gr(y, t) have the same form as in Eq. (24). The corresponding 
probability density function is the product of two l-dimensional probability density 
functions; 

P’b,, n,; t) = PI@,; 1) P,(n,; t) (28) 

P,, P, are given by Eq. (25). Thus, the solution of Eq. (8) is simulated 
stochastically by a a-dimensional displacement of the vortex elements in two per- 
pendicular directions using two sets of independent Gaussian random numbers, 
each having a zero mean and a standard deviation g = ,/m. 
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The random walk algorithm is compatible with vortex schemes because of its 
Lagrangian grid-free form. It can also be applied in regions of large gradients near 
solid boundaries to move vortex elements which are generated to satisfy the no-slip 
condition without loss of resolution since it does not depend on the resolution of a 
grid. Ghoniem and Sherman [18] discuss in detail the stochastic solutions of the 
diffusion equation with different boundary conditions, its application to the reac- 
tion-diffusion equation, and to the combined heat and momentum diffusion that 
arises in natural convection. 

In the random vortex method, the diffusive transport of vortex elements is 
simulated stochastically by adding to their convective motion an extra displacement 
drawn from a Gaussian population with a zero mean and a standard deviation g. 
The total transport of vortex elements is obtained by adding the two fractional dis- 
placements: 

X,(Xjf ' + At) = Xj(X,Y t, + 1 u(Xj/r) At + qj (29) 

where Ck is a kth-order time integration scheme and qj= (v],, q,) j is a 2-dimen- 
sional Gaussian random number, while u = ug + up is the total velocity field due to 
the vortex elements and the satisfaction of the potential boundary condition. The 
computation of the latter is now presented. 

II.3 Potential Boundary Condition 

The potential boundary condition, the first component of Eq. (3-a), is imposed in 
the direction normal to the boundaries. The total velocity produced by a vorticity 
distribution in a semi-confined space can be decomposed into two components, 

u=u,+u, (30) 

where ug is the field induced by the vorticity within the domain D, given by 
Eq. (19), while u, is an irrotational component added to satisfy the boundary con- 
ditions u. n = 0, where n is the normal to solid walls (this component can be regar- 
ded as a result of image vortices which are located outside the domain.) Since up is 
irrotational, it can be represented in terms of a potential 4 where up = Vqi and 4 is 
governed by 

Acj=O. (31) 

4 is uniquely determined if its value, its normal derivative or a combination of both 
is specified on a closed contour (in the second case, C$ is determined up to an 
arbitrary constant). On a solid wall, 

Vcj.n= -uug.n. (32) 

One way to solve the potential flow problem, formed of Eqs. (31) and (32) is 
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conformal mapping. This method produces an analytical solution for the potential 
flow by defining the image system of the vortex elements, provided that the 
geometry is simple. The solution is grid-free and can provide high resolution close 
to the boundaries and at points of separation, where it is essential to determine 
accurately the flux of vorticity into the interior of the domain. For a given dis- 
tribution of N vortex elements in the physical Z- plane, where z = x + iy and 
i = 0, the total velocity at the center of the jth element is 

(33) 

where w = u - iv is the complex velocity, [ is the complex coordinate in the trans- 
form plane, A[ = cj- [,, Ar= ii- ci, and 3 is the complex conjugate, hi= 6F(ii). 
F= dc/dz is the transformation function that maps the physical z-plane to the 
upper half of the [- plane. The incoming flow is represented by a source of strength 
2(H, - H,Y), located at c = (0,O) in the transform plane, corresponding to x = -cc 
in the physical plane. A top-hat profile is obtained at sections one-step-height, or 
larger, to the left of the step. 

For the geometry considered here, shown schematically in Fig. 1, the transfor- 
mation function can be constructed by applying the Schwarz-Christoffel theorem; 

(34) 

where z in this expression is normalized with respect to the channel height H,, and 
c( = HZ/H, is the expansion ratio in the channel. z = z(c) is obtained by integrating 
Eq. (34), which yields 

Z=-l-(in(g)-iln(g)) (35) 

where 
z=J(&1)/(1-[). 

The inverse, [ = c(z), require a numerical solution of Eq. (35) by iteration, or a 
numerical integration of Eq. (34). 

II.4 No-slip Boundary Condition 

In a real flow, the velocity of the fluid at solid boundaries must remain the same 
as the velocity of the boundary. Any slip velocity is annihilated and vorticity is 
produced. If the slip velocity is u,, the total circulation produced to satisfy the 
no-slip condition is 

l-= - I u,Y.ds (36) 
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where s is the tangential direction to the wall. This scheme of vorticity generation, 
discussed in more detail by Lighthill [27], was used by Payne [28] to construct a 
numerical solution for the Navier-Stokes equations around a circular cylinder 
using a velocity-vorticity formulation on a grid. 

Chorin [S] implemented Eq. (36) in the random vortex method to satisfy the 
viscous boundary condition. The vorticity generated along the wall is discretized 
into elements separated by a distance S. To improve the resolution, the element at 
each point is subdivided into several elements such that f < f,,,, where f,,, is the 
maximum allowable vortex strength. These elements leave the wall by diffusion, to 
become part of the interior vorticity field at later times. 

At moderate and high values of the Reynolds number, and within a thin wall 
sublayer A,, the velocity component normal to the wall is very small compared to 
the component parallel to the wall. Moreover, variations in the velocities in the 
direction parallel to the wall are smaller than the variations in the direction normal 
to it. This simplifies the expression of the vorticity and its transport equation. In 
principle, these observations are valid only for boundary-layer flow at high 
Reynolds numbers. If A,s is restricted to 0(,/m, i.e., the temporal growth of the 
boundary layer during few time steps, these properties can be used even if the 
interior flow is not a boundary-layer flow. In the following, we employ the results of 
boundary-layer scaling to reform the shape of the vortex elements near the boun- 
daries and insure high resolution in the direction normal to the wall. This also leads 
to saving in the computations. 

In this section, the coordinate system (x,y) is used to represent the parallel and 
the normal to the wall, respectively. Geometric coordinate transformation is 
employed whenever necessary for adapting the algorithm to match the coordinates 
of the channel to the coordinates of various walls. Inside the wall sublayer, 
do/ax 6 &lay, and the expression of the vorticity is reduced to 

0 = - aMjay (37) 

Accordingly, the vorticity distribution can be approximated by a number of 
sheets, of finite length S, that remain parallel to the wall while they transport 
velocity jumps 6~ normal to the wall. If the circulation per unit length carried by a 
sheet is yi = (6~); = ri/S, then for a number of sheets M, the vorticity distribution is 
given by 

where fA is the vortex sheet core function, defined as 

(38) 

(39) 

and the 6( ) is the Dirac delta function, while H( ) is the Heavyside function. The 
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corresponding velocity distribution is obtained by substituting Eq. (38) into 
Eq. (37) and integrating: 

U(X)= f yiK,(X-Xi) (40) 
i= I 

where 

(41) 

To compute the velocity of a vortex sheet; the velocity at a point is averaged over 
the length of the sheets, 

u(xi) =; j-z+;; u(x’, y) dx’. 

Substituting from Eq. (40) and integrating, 

u(X,) = f Yi Dq H(Yj- Yi) 
i= I 

(42) 

where 

+(X,-Xi-S)H(xj-xi-S)}. (43) 

By inspection, we find that D, = 0 if Ixj- xi1 > S, i.e., if the two sheets do not 
overlap in the x- direction. Otherwise, the contribution is proportional to the 
overlap. Thus, 

D,= 1 -v if lxj-xil <S, 
= 0 if lxj-xi/ >S. 

(44) 

Since the U- velocity is obtained by averaging along a length S, the accuracy of 
the algorithm is expected to be O(P), while n depends on the degree of overlap 
between the sheets. The u-component is computed by integrating the continuity 
equation; 

and using Eq. (42) for the U- velocity. The integral Z yields 

Z= z Yi D&Y,- Yi) H(.Yj- Y;) 
i= 1 

(45) 

(46) 
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thus, for the sheet at xi, Eqs. (45) and (46) yield 

(47) 

where I’ are evaluated at (x, f S/2, y,). 
Vortex sheets diffuse perpendicular to the wall only, according to the boundary 

layer argument presented before. Thus, if xi(t, t) is the center of a vortex sheet, its 
variation with time is given by 

Xj(Xj, t + At) = Xj(Xj, t) + U(Xj) At + (0, S)j. (48) 

The two components of u(x,) are given by Eqs. (42) and (47). 

11.5. Downstream Boundary Condition 

The numerical scheme described in this section is used to compute the flow field 
in a channel with a rearward-facing step, Fig. 1. At time t = 0, the initial conditions 
consist of a potential flow produced by a source located at x = -co, and a vortex 
sheet along the walls. The strength of the vortex sheet is calculated using Eq. (36), 
where u,~ is the slip velocity generated by the potential flow. Although the scheme is 
time- dependent, our interest here is confined to the steady-state solution. 

The computational domain is I,,,, S x S X,,,. At the inlet section, x = Xmin, the 
velocity profile is uniform provided that IXminI 2 H,. This is the velocity produced 
by the potential component of the flow. The growth of the boundary layers along 
the two walls of the entry channel before the step does not affect the velocity at the 
inlet section because of the symmetry of the vorticity distribution. 

At x=Xmax, an exit boundary condition is imposed. At this section, all the 
vorticity is deleted. In the computation, X,,, was chosen to be larger than the 
reatachment length, X,, to minimize the effect of the downstream boundary 
conditions on the developing flow near the step. This choice will be discussed in 
more detail later. 

U 

@ Hll HZ 

1 x---yq 

xmax ’ 

FIG. 1. The geometry of the computational domain. 
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INTERIOR 

BOUNDARY 

Vorticity Generation 

no-slip 

FIG. 2. Schematic diagram showing the structure of the algorithm for the random vortex method. 

II.6 Algorithm 

The vortex algorithm is described schematically in Fig. 2. By extending the 
application of Eq. (40) to the wall, y=O, the slip velocity u, is computed and the 
strength of the new vortex sheets is evaluated according to Eq. (36). If If I > r,,,, 
where r,,, is the maximum circulation of a sheet, several sheets are used to carry the 
total vorticity into the field. If Irl <r,,,, nothing is done. This provides a 
mechanism that can be used to refine the resolution of the computation, without 
increasing unjudiciously the number of vortex elements. 

Vortex sheets associated with each wall are displaced according to Eq. (48). If 
yj > A,, the sheet is transformed into a vortex blob with r, = S y,. Sheets that are 
transported outside the physical domain are reflected back across the wall. Since a 
vortex sheet and a vortex blob are two different representations of the same object, 
they should produce the same velocity field between their centers and the wall. This 
is accomplished by the following choice for the core radius: 

6 = s/71 (49) 

provided that A,? < 6; which is always satisfied in the computations. 
The velocity field in the interior is computed using Eq. (33) and the vortex blobs 

are transported according to Eq. (29). Vortex blobs that fall within any of the wall 
sublayers are transformed into vortex sheets with y, = f,/S. If a blob jumps outside 
the computational domain, an unlikely event if A, > 20, it is deleted. Care must be 
exercised in transforming back and forth from the channel coordinates for vortex 
blobs to wall coordinates for vortex sheets. 
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III. SOLUTION 

The numerical scheme described in the previous section is now applied to com- 
pute the steady flow field in the channel in Fig. 1 at moderate Reynolds numbers. 
This flow can be regarded as an entry flow in a channel with two parallel walls, 
followed by a confined recirculating flow behind a rearward-facing step. Results are 
used to study the accuracy and convergence of the numerical algorithm and the 
properties of the recirculating flow. The channel flow is stable and possesses a well- 
established analytical solution. The recirculating flow is unstable beyond low 
Reynolds numbers, and its structure is complicated by the interactions between a 
developing boundary layer on the top wall, a separating shear layer at the step, a 
recirculation zone and a developing boundary layer after reattachment on the 
bottom wall. It is, thus, a challenging test for the accuracy and robustness of a 
numerical scheme. 

The range of Reynolds numbers, based on the step heigth H, and the uniform 
velocity U at the inlet section, is limited to 70 -CR < 230. Within this range, 
Denham and Patrick [29], which we will refer to as D&P, and Armaly et al. [30] 

R = 73 

R = 125 

R = 229 

FIG. 3. Sreamwise velocity profiles at different Reynolds number for a developing flow in a channel 
with parallel walls, before the step. The computed solutions are represented by solid lines and the 
analytical solutions are shown by open circles. 
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have shown experimentally that the recirculating flow remains 2-dimensional up to 
R= 229. Near the upper limit, weak 3-dimensional structures and spanwise 
variation in the velocity were observed around the reattachement point. The 
application of a 2-dimensional flow model is, hence, physically justifiable below this 
value, and the comparison between the numerical solution and the experimental 
results is legitimate. Computed results presented in this section should be con- 
sidered as “converged” results, i.e., obtained by successive refinement of the 
numerical parameters until no further changes occured. 

Figure 3 shows a comparison between the computed solutions, depicted by solid 
lines, and the analytical solutions, represented by open circles, for an entry flow in a 
channel with parallel walls, upstream of the step. Results are obtained by averaging 
the solution over 50 time steps to remove the effect of the statistical error, starting 
I50 time steps after t = 0. The presence of the step at the end of the channel does 
not induce any measurable effect since the developing flow is of the boundary-layer 
type, i.e., it may be approximately described by parabolic equations. The inlet 
velocity profile is a plug flow at x = Xmin. The analytical solution is constructed by 
matching the solution of two developing boundary layers on both walls with an 

R = 125 

FIG. 4. Instantaneous vorticity fields for the flows of Fig. 3. The solid circle depicts the location of a 
vortex element and the line is its velocity vector. 
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accelerating flow in the interior (Schlichting [31] and Van Dyke [ 321). All 
numerical solutions were obtained using the following set of parameters: S = 0.5, 
r,,, = 0.0417, At = 0.3 with a second-order time-integration scheme in Eq. (29) while 
A, = 2~. The accuracy of the numerical scheme is evident from the results. 

Figure 4 shows instantaneous vorticity fields for the flows in Fig. 3. They are 
presented in terms of all the vortex blobs used in the interior, each element shown 
by a solid circle and a line depicting its instantaneous velocity vector. All vortex 
elements carry the same value of the circulation r,,,. Vortex sheets on the walls are 
not shown in the figure due to their high concentration. These figures exhibit the 
self-adaptive nature of the computations that was mentioned earlier. Vortex 
elements are found only within the boundary layers, and the thickness of these 
layers is controlled by the Reynolds number. The potential core, where the velocity 
is uniform, is void of vortex elements. The merging of the two boundary layers 
developing on the opposite walls can be observed, while the potential core is 
diminishing faster as the Reynolds number is reduced. 

Figure 5 shows the effect of the number of time steps used to produce the average 
velocity profiles. The statistical error associated with the random walk simulation of 
diffusion is averaged out using as low as 10 time steps, Instantaneous velocity 
profiles are slightly more rugged than those obtained by averaging over 10 steps. 
However, these local pertubations decay since this flow is stable and steady, and 
increasing the sample does not change the average results. 

Figure 6 depicts a comparison between the computed solutions of the average 
streamwise velocity profiles for the recirculating flow and the experimental results of 

R = 125 

FIG. 5. Effect of avaraging on the accuracy of the computed solution for a developing flow between 
parallel walls at R = 125. 
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R=73 

0 0.8 2 4 6 8 10 

R=125 

3 0.8 2 4 6 8 10 

R=191 

0 0.8 2 4 6 8 10 

R=229 
FIG. 6. Comparison between computed and measured average streamwise velocity profiles at different 

Reynolds number for a recirculating flow behind a rearward-facing step. The continuous line is for the 
numerical solution and the open circles are the experimental results of Denham and Patrick. Dimensions 
are normalized with respect to step heights, and R = UHJv. 
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-2 0 2 4 6 8 10 12 

FIG. 7. Volume flow rate at different sections downstream of the step at R = 125: * for the computed 
results and 0 for experimental data. 

D&P at different Reynolds numbers. The same set of numerical parameters 
employed to produce Fig. 3 was used to obtain these results. In actual com- 
putations, both fields were obtained in the same run. The value of Xmin, at which 
the inlet condition of a plug flow was applied, was varied until the computed 
velocity profile at the step approached the corresponding experimental velocity 
profile. Averaging started when the total circulation Tr = Cjril, where the sum- 
mation is performed over all vortex elements, reached a constant value (see 
Fig. 18). The numerical solution reached steady state when no further significant 
changes were observed on the average velocity profiles. At this point, the 
streamlines constructed using these average velocity profiles formed closed loops 
around a common center. 

The numerical solutions show very good agreement with the experimental results 
except for two cases: (1) the range of 4 < x d 8 at R = 125, and (2) around the reat- 
tachment point at R = 229, where noticeable deviation is detected. In the first case, 
the experimental results did not satisfy continuity, expressed as s u(x,y’) = constant, 
at x = 4, 6, and 8, as shown in Fig. 7. The deviation is thus attributed to inaccuracy 
in the experimental measurements. For the second case, D&P confirmed the 
existence of secondary 3-dimensional flow around the zone of reattachment at 
R = 229. Results of Armaly et al. [30] show the onset of 3-dimensional motion 
around the same value of R. 

A sample of the corresponding instantaneous vorticity fields are shown in Fig. 8. 
Close examination of the figure reveals that the vorticity field is composed of a 
small number of large eddies, while each of the latter is formed of a large number of 
computational vortex elements. The flow field is formed of four regions that merge 
as the flow develops: a boundary layer growing on the top wall, a boundary layer 
forming on the step wall and separating at the step, a separating shear layer and a 
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R = 73 

R = 125 

R = 191 

recirculation zone downstream the step, and a boundary layer that develops on the 
bottom wall after the recirculation ends and the flow is reattached to the wall. 

Figure 9 shows the cross-stream velocity component. The streamline plots for the 
mean flows are shown in Fig. 10. These plots were constructed from particle paths 
generated using the average velocity data computed on a uniform grid. The initial 
positions of the particles were distributed arbitrarily in the channel to obtain higher 
resolution, hence, the plots do not conform with the conventional equipartitioned 
stream function plots. 

The variation of the reattachment length, X,, with Reynolds number is sum- 
marized in Fig. 11. The reattachment point is defined as the point on the bottom 
wall where the velocity gradient c?u/@ = 0, or the point at which the separating 
streamline intersects with the bottom wall. Using either definition, the value of X, 
can vary within kH,/2, depending on the accuracy of the plots for the average 
velocity profiles or the streamline contours. The first definition was used to plot 
Fig. 11. While X, can be used as an integral measure for the accuracy of the 
numerical results, the detailed velocity profile plots in Fig. 6 remains as the decisive 
test. 

The effect of the velocity profile at the step on the flow field was investigated by 
varying Xmin, thus allowing the boundary layer in the developing flow to grow 
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FIG. 9. Average cross-stream velocity profiles corresponding to the flows in Fig. 6. 

further and the flow at the step to approach the experimental profile. Results are 
shown in Fig. 12, compared with the experimental velocity profiles of a flow with a 
nearly fully- developed velocity profile at the step at R = 191. As expected, the reat- 
tachment length increases as the boundary layer thickness increases at the step. 

The average pressure distribution for R = 191, presented in Fig. 13 in the form of 
a 3-dimensional plot, was obtained using a finite difference solution of Eq. (6) and 
the average velocity distribution obtained from the vortex simulations. Details of 
the solution scheme are presented elsewhere (Cagnon [33]). The scaling suggested 
by Westphal et al. [34] for a turbulent recirculating flow was used to present the 
results for the pressure along the bottom wall in Fig. 14. The similarity between the 
pressure coefficient at different Reynolds numbers, when plotted against a 
downstream coordinate normalized with respect to the recirculation length, is 
approximately satisfied only within the recirculation zone. After reattachment, the 
pressure gradient is a strong function of the Reynolds number. 
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R = 125 

3 
R = 229 

FIG. 10. Average streamline plots for the flows of Fig. 6 

14 

0 
0 50 100 150 200 250 300 

Reynolds nunber 

FIG. 11. Comparison between the numerical and experimental reattachment length X,, normalized 
with respect to the step heights, with Reynolds number (X, vs R). 
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R=191 

FIG. 12. Average streamwise velocity profiles for a flow at R= 191 with different velocity profiles at 
the step. The continuous lines are for the numerical simulation and the open circles represent the 
experimental velocity profile. X,,,, refers to the length of the computational domain upstream of the step. 
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FIG. 13. Pressure distribution for a flow at R = 191. 

IV. DISCUSSION 

In this section, we discuss the accuracy of the random vortex method using the 
results of numerical examples. In the process, sources of errors are identified and a 
scheme to optimize the choice of the numerical parameters is suggested. The 
numerical parameters used in the discretization of the equations are: (1) the length 
of a vortex sheet S; (2) the circulation of a vortex element; a sheet or a blob, f,,,; 
(3) the thickness of the wall sublayer d,; and (4) the time step At. One more 
parameter that affects the calculation is X,,,, the length of the computational 
domain downstream the step. At this section, vortex elements are deleted; their 
effect being considered very small on the upstream flow. It was found that 

0.40 / 1 
* R .73 

z 0.35 - 0 R 125 a 
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-1.0 -0.5 0.0 0.5 1.2 

x* - [X Xrl / Xr 

FIG. 14. Normalized pressure coeflicient vs the normalized downstream distance from the step for 
four values of Reynolds number. 
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x max - 2X, is a reasonable choice, smaller values of X,,, produce shorter recir- 
culation length and longer values do not change X,. 

To investigate the effect of each parameter on the accuracy of the results, a set of 
numerical experiments was conducted in which only one parameter was varied, 
while the other parameters were maintained at a fixed small value. A comparison 
between the computed and the measured velocity profiles were used to assess the 
accuracy. In most cases, the effect was most strongly felt around the section where 
reattachment occurs, while the rest of the profiles remained essentially the same. 
Thus, the reattachment length was used as an integral measure for the accuracy. 

To examine the effect of r,,,, we used the following set of parameters: S= 0.5, 
d,V = 20, dt = 0.3, and a second-order time integration scheme for Eq. (29), while 
X,,, = 15 for R = 73-191. For R = 73, X,,, was varied between 12 and 15 without 
producing any noticeable effect on the computed velocity profiles. For R = 229, we 
used X,,,,, = 15 and 21, since X, is expected to be around 10. The computed value of 
X, increased from 8.5 to 9 with increasing X,,, . In the following, the effect of rrn on 
the accuracy of the computations is described. 

At a particular value of R; and for a fixed value of S, the total number of vortex 
elements needed to saturate the field should be inversely proportional to r,, since 
at steady state N = j 101 dA/T,,,, where 101 is the steady-state vorticity distribution. 
However, computational results showed that this relationship is satisfied only for 
r, < r*. At larger values of r,, the reattachment length is small, X, - 4, and the 
computed velocity profiles are almost independent of R. At that level, N is found to 
be independent of r,,,, and the vorticity field is contaminated with parasite vortex 
elements generated due to the inaccurate discretization of the vorticity field. 

The total number of vortex elements N increases as r, is decreased, while X, 
becomes longer, as shown in Figs. 15 and 16, respectively, for R = 191 and 
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FIG. 15. The effect of the circulation of vortex elements on the total number of elements used to 
discretize the vorticity field and the total absolute circulation for R = 191 and X,,, = -1.0. 
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FIG. 16. The effect of the circulation of vortex elements on the reattachment length for the case 
R= 191 and A’,,, = -1.0. 

Xmin = -1.0. Meanwhile, the total value of circulation T1 = Cjrij decreases, 
indicating that fewer vortex elements are generated. The latter can be confirmed by 
inspecting Fig. 17, obtained from computations for R = 191 and Xmin = -3.0, where 
the vortex blobs used in the computations are plotted according to their sign: a 
“ +” indicating a positive (counterclockwise) vortex, while a “0” is a negative 
(clockwise) vortex. Both figures show that by reducing r,,, from 0.0624 to 0.0417, 
the number of negative blobs inside the top-wall-boundary layer, which is formed of 
positive vorticity, is decreasing and the accuracy of the simulation is improving. For 
values of r,,, < r* = 0.0417, the number of vortex elements generated became 
proportional to r,,, so that T, = CIrj/ = constant, and X, became independent of 
r,. 

From the description of the algorithm in Section II, it is clear that the process of 
vorticity generation is dependent on the velocity field induced by the existing vortex 
elements. If vortex elements do not discretize the vorticity field accurately, the 
induced velocity field will be contaminated with large errors. Vortex elements with 
large values of r,,,, which should have been divided into a number of vortices with 
smaller r, when they were generated, produce errors in the velocity field. That, in 
turn, results in the generation of vortex element of the opposite strenght. These are 
“error” vortices, or parasite vortex elements that should not have been generated 
had the initial discretization been accurate. By decreasing r,,,, the number of 
parasite vortices is decreased so that the total number of vortex elements N 
approximately satisfies Nr, = const. 

The algorithm of vorticity generation at the wall represents a “self-healing” 
mechanism of the vortex algorithm and the above observations can be used to 
construct a consistency test for the computations. If the value of r,,, is reduced by a 
factor b, N should increase by the same factor, otherwise the computations should 
be repeated with smaller values of r,,, until this condition is satisfied. Note that the 
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FIG. 17. Average streamwise velocity profiles and instantaneous vorticity fields depicting the sign of 
circulation of the vortex elements for a flow of R= 191, X,,,,, = -3, for two different values of 
circulation. The + sign indicates a positive (counterclockwise) vortex while a 0 sign is a negative 
(clockwise) vortex. 
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FIG. 18. Variation of the total number of vortex element with time, for the flow at R= 125, with 
X mm = -3.0. 

computations do not have to be carried until the velocity field reaches a stationary 
state, since the number of vortex (blobs and sheets) reaches a constant value within 
the first 100 time steps, as shown in Fig. 18 for R = 125 and Xmin = -3.0. This 
condition if sufficient, but not necessary, for accuracy and the presence of a small 
number of parasite vortices may not be felt if I-,,, is small. The cancellation between 
the fields of parasite vortices of opposite signs, if their number is small, may 
suppress their ill effect. 

Figure 19 shows the variation of the total number of vortices with Reynolds 
number (for R = 229, N corresponds to X,,, = 15). The figure suggests that, within 
this range of Reynolds number, the number of elements necessary to achieve a given 

i 

Q 55 100 150 200 250 300 

Reynolds number 

FIG. 19. Total number of vortex elements vs Reynolds number for two different values of vortex 
element circulation. 
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accuracy is independent of R. This trend may be related to the fact that within our 
range of Reynolds number, the dynamics of the flow, which can be characterized as 
a balance between the effect of inertia and viscous forces, remains almost the same. 
We did not observe transition, strong self-sustained oscillations, or strong 
separation along any of the channel walls. The onset of any of these phenomenon 
would require an increase in the number of computational elements to resolve the 
associated vorticity field. Increasing the Reynolds number within this range causes 
the boundary layers to become thinner, and the computational vortex elements to 
concentrate closer to the walls. It was observed, however, that for the recirculating 
flow, the number of time steps necessary to reach steady state increased as R 
increased, ranging approximately from 150-400. It is suspected that weak 
unsteadiness may be responsible for this phenomena. 

To study the effect of the time step on the steady state results, the value of At was 
varied from 0.15 to 0.3, while r,,, was maintained at the smallest value. The 
Courant time step corresponding to the sheet length is 0.6, and hence the values 
used in the computations are small. No noticeable changes were observed in the 
velocity profiles. Moreover, when I-,,, 5 r*, employing a first-order time integration 
scheme did not affect the accuracy of the steady-state solution. However, all the 
results presented here were obtained with second-order time integration for the 
motion of vortex blobs in the interior. It should be emphasized that this conclusion 
applies only to the steady-state solution, and that time-dependent solutions may 
require special care in the time integration (for results concerning the effect of the 
time step on a time-dependent flow, see Milinazzo and Saffman [35], Roberts 
[36], and Sethian and Ghoniem [ 121.) 

No attempt was made to change the value of S, the sheet length, since the results 
obtained with S = 0.5 proved to be accurate. It is conceivable that when the number 
of vortex elements N is large, a high degree of overlap between the sheets is 
established within the wall sublayer A,. This overlap reduces the effect of the length 
of each individual element. It should be noted that if the flow separates and reat- 
taches along a particular wall due to a strong pressure gradient, smaller values of S 
may be required to resolve the vorticity field. The presence of a separation bubble 
on a wall causes strong variation of vorticity in the streamwise direction, and S 
must become small enough to capture this change. This situation was not encoun- 
tered in the present computations. 

The thickness of the wall sublayer was varied from 20 to 3~7 without noticeable 
effect on either the total number of elements or the velocity profiles. With the first 
choice, A,\ = 0.1 - 0.18 H,, depending on the Reynolds number, which is equivalent 
to 0.033-0.06 of the channel height downstream of the step. In a difference 
approximation, this would correspond to a single grid point away from the wall if 
30 points were employed across the channel. In the vortex calculations, three sheets 
appeared on the average between the wall and the interior. This provided finer 
resolution for the vorticity field within the wall sublayer. Since the validity of the 
vortex sheet algorithm is dependent on the boundary layer approximation, which 
ceases to apply where the main flow direction experiences a sudden change, caution 
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must be exercised near corners. In this computation, each wall sublayer ended 
immediately before the intersection between the two sheet zones at the step and 
around the corner. A vortex sheet leaving either zones at this point is turned into a 
vortex blob. 

In all results presented, the sheet velocity normal to the wall was taken into 
account. However, when A is limited to 20, the value of v in Eq. (47) is very small 
and can be neglected. Numerical experiments produces the same results when v is 
set to zero in Eq. (48). This represents saving in the programming effort, but not in 
computational time, since the boundary layer calculation, while more complicated 
to program, requires much less time than the interior calculations. 

V. CONCLUSIONS 

Computations of a recirculating flow downstream a rearward-facing step in a 
channel, at values of Reynolds number for which 2-dimensional, steady flow is 
experimentally observed, were performed using the random vortex method. Our 
choice of the test cases and the regime of Reynolds number, while mandated by the 
availability of experimental results for comparison, represent a problem that is fun- 
damentally challenging and practically important. Converged results, obtained by 
successive stepwise refinement of the numerical parameters, showed good 
agreement with analytical solutions, or fell within the experimental tolerance. The 
behaviour of the error suggests that the variation of the number of vortex elements 
as a function of the circulation of each element can be used to judge the accuracy of 
the computed solution. The criterion depends on the fact that, within a specified 
computational domain, the total circulation in the field should be invariant to the 
strength of a computational vortex element. 

The numerical solutions of steady problems show that the number of elements 
used in the simulation has the strongest influence on the accuracy. Using a small 
number of elements to discretize the vorticity field produces errors that reduce the 
reattachment length for the recirculating flow. In this computation, when the num- 
ber of vortex elements exceeds a critical value, the initial separartion between vor- 
tex sheets and the time step, if chosen small enough, is of secondary importance. 
The number of vortex elements required to achieve accurate results is almost 
independent of the Reynolds number. Averaging over ten time steps removes the 
statistical error and yields essentially smooth profiles that compare favorably with 
the analytical solution of a steady channel flow. For the recirculating flow, as the 
Reynolds number increases, averaging over an increasing number of time steps is 
necessary to compute a steady-state solution. 

It should be emphasized that the method employed here is time-dependent, and 
not limited to low Reynolds number. Several open questions regarding the scheme, 
and the flow, remain to be answered by analysis or more computations: What is the 
optimum choice of the core function for viscous flow simulations, what is the 
optimum choice of the numerical parameters under unsteady conditions, how to 
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reduce the computational time without sacrificing accuracy, whether the flow within 
this regime is weakly or strongly stable, and how does this stability phenomenon 
depend on the Reynolds number. 

ACKNOWLEDGMENT 

This work is supported by the National Science Foundation Grant CPE-8404811 and the Air Force 
Onice of Scientific Research Grant AFOSR84-0356. 

REFERENCES 

1. A. J. CHORIN AND P. BERNARD, J. Comput. Phys. 13, 423 (1973). 
2. K. KUWAHARA AND H. TAKAMI, J. Phys. Sot. Jupan 34, 247 (1973). 
3. P. SAFFMAN AND G. BAKER, Ann. Rev. Fluid Mech. 11, 95 (1979). 
4. R. KRASNY, J. Comput. Phys. 65, 292 (1986). 
5. A. J. CHORIN, J. Fluid Mech. 51, 785 (1973). 
6. A. J. CHORIN, J. Comput. Phys. 21, 423 (1978). 
7. A. J. CHORIN, SIAM J. Sci. Statist. Comput. 1, 1 (1980). 
8. W. T. ASHURST, presented at the 2nd Symposium on Turbulent Shear Flows, Imperial College, 

London, July 1979. 
9. A. F. GHONIEM, A. J. CHORIN AND A. K. OPPENHEIM, Philos. Trans. Roy. Sot. London A 303, 303 

(1982). 
10. C. C. HSIAO, A. F. GHONIEM, A. J. CHORIN AND A. K. OPPENHEIM, in: Proceeedings of the 20th 

Symposium (International) on Combustion, Ann Arbor, Michigan, 1984, edited by E. Dabora et al. 
(The Combustion Institute, Pittsburg, Pa., 1985). p. 495. 

11. A. Y. CHEER, (Rep. PAM-145,) Center for Pure and Applied Mathematics, University of California, 
Berkeley, April 1983. 

12. A. F. GHONEM AND J. A. SETHIAN, The AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, 
January 1985, AIAA-854146, Amer. Inst. Aeronaut. and Astronaut., New York. 

13. J. A. SETHIAN AND A. F. GHONIEM, Validation of the vortex method, submitted for publication. 
14. 0. HALD, SIAM J. Numer. Anal. 16, 726 (1979). 
15. J. T. BEALE AND A. MAJDA, Math. Comput. 39, 28 (1982). 
16. C. R. ANDERSON AND C. GREENGARD, SIAM J. Numer. Anal. 22, 413 (1985). 
17. Y. NAKAMURA, A. LEONARD AND P. SPALART, AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasmu 

and Heat Transfer ConjI, St. Louis, MO., June 1982, AIAA-82-48. 
18. A. F. GHONIEM AND F. S. SHERMAN, J. Comput. Phys. 61, 1 (1985). 
19. 0. HALD, SIAM J. Sci. Statist. Comput., in press. 
20. 0. HALD, (PAM-270,) Center for Pure and Applied Mathematics, University of California, Berkeley, 

1985. 
21. M. F. MCCRACKEN AND C. S. PESKIN, J. Comput. Phys. 35, 183 (1980). 
22. J. A. SETHIAN, J. Comput. Phys. 54, 425 (1984). 
23. E. ACTON, J. Fluid Mech. 76, 561 (1976). 
24. A. LEONARD, J. Comput. Phys. 37, 289 (1980). 
25. M. PERLMAN, J. Comput. Phys. 59, 200 (1985). 
26. J. T. BEALE AND A. MAJDA, J. Comput Phys. 58, 188 (1985). 
27. M. LIGHTHILL, “Introduction: Boundary Layer Theory,” in: Laminar Boundary Theory, 

L. Rosenhead, Ed. (Oxford Univ. Press, London, 1963) p. 46. 
28. R. B. PAYNE, J. Fluid Mech. 4, 81 (1958). 



LAMINAR RECIRCULATING FLOW 377 

29. M. K. DENHAM AND M. A. PATRICK, Trans. Inst. Chem. Eng. 52, 361 (1974). 
30. B. F. ARMALY, F. DURST, J. C. F. PIERIRA AND B. SCHONLJNG, .I. Fluid Mech. 127, 473 (1983). 
31. H. SCHLICHTING, Z. Angew. Math. Mech. 14, 368 (1934). 
32. M. VAN DYKE, J. Fluid Mech. 44, 813 (1970). 
33. Y. CAGNON, M. SC. thesis, Department of Mechanical Engineering, MIT, 1986 (unpublished). 
34. R. WESTPHAL, J. P. JOHNSTON AND J. K. EATON, NASA Contractor Report 3765, 1984. 
35. F. MILINAZZO AND P. G. SAFFMAN, J. Comput. Phys. 23, 380 (1979). 
36. S. ROBERTS, J. Comput. Phys. 58, 29 (1985). 

58 I /6X/2-9 


